

Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

2.3 Other

3. Basics of design

4. Applications

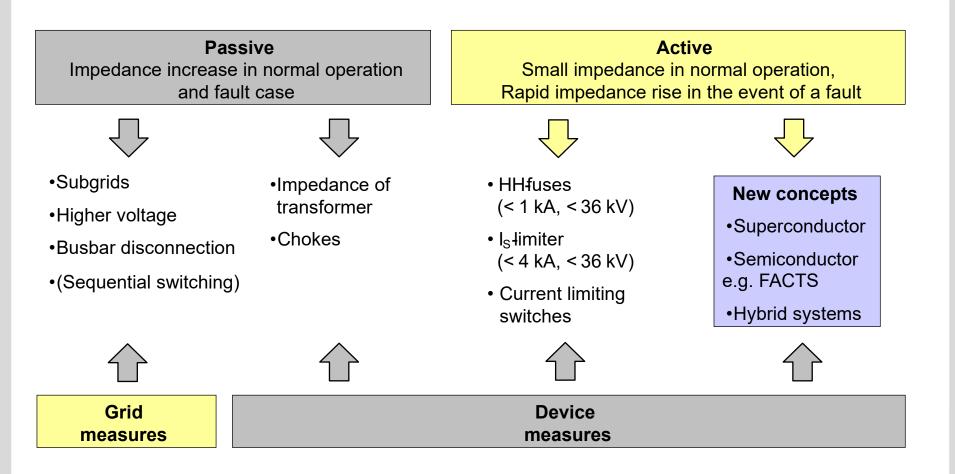
- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

"it is impossible to avoid short-circuits"

2 - 23.11. 2021

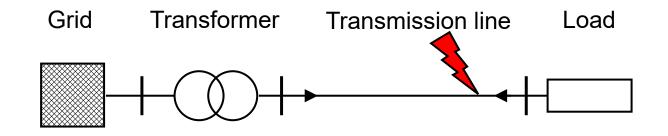
Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

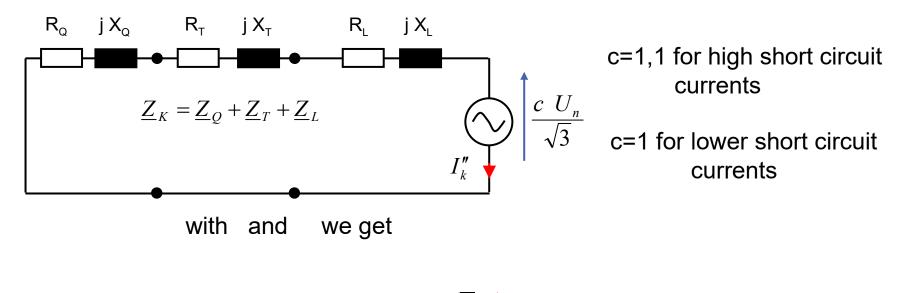
Thermal stress due to short-circuit currents


Thermal energy at fault location

$$W_{\mathcal{F}} = \int_{0}^{t_{\mathcal{F}}} i \cdot v_{\mathcal{F}} \,\mathrm{d}t$$

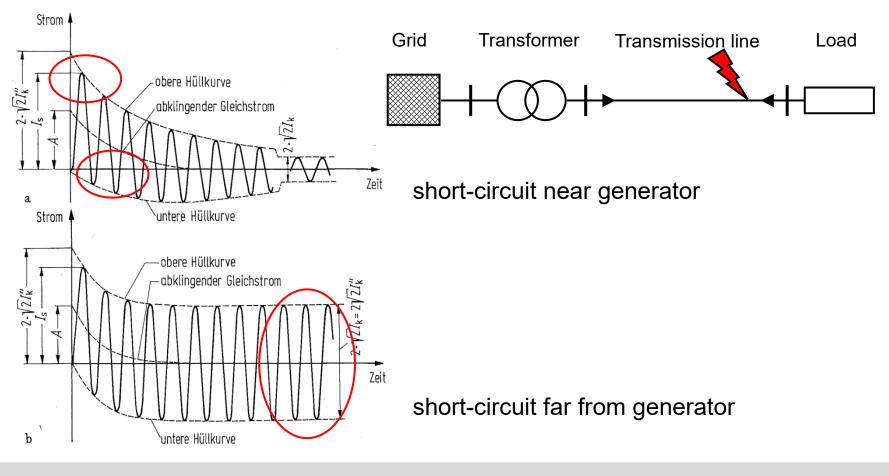
 $v_F \approx const. \rightarrow W_F \propto i$


Conventional methods for fault current limiting



Short circuit current calculation

Electrical equivalent circuit (3-phase short circuit)


Surge short-circuit current $i_p \leq \sqrt{2} I_k^{i}$

5 - 23.11. 2021

Motivation Short circuit current calculation

Short circuit current calculation according to DIN EN 60909-0 (VDE 0102)

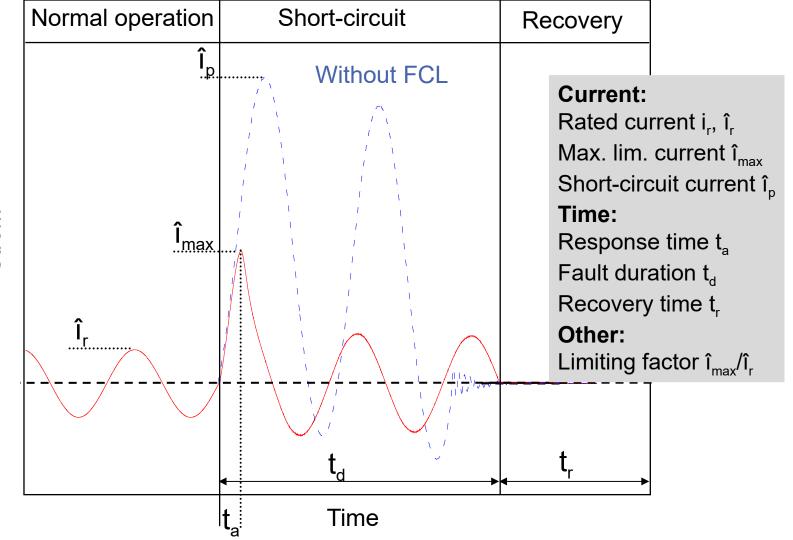
Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

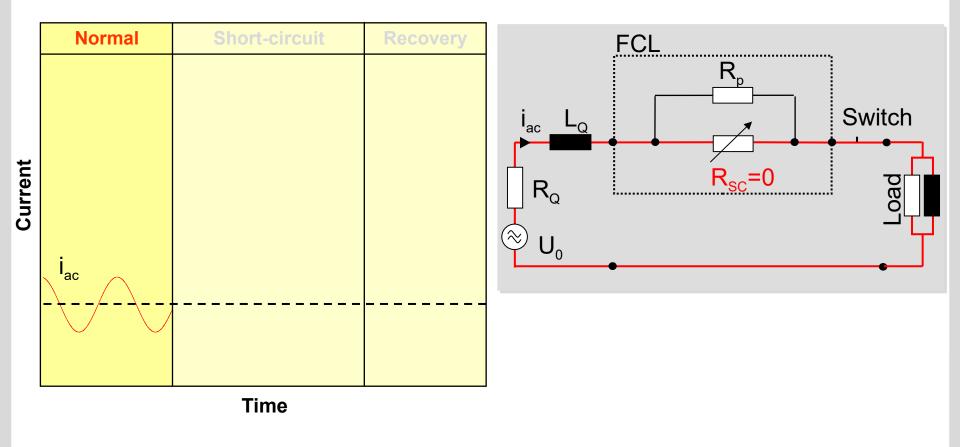
2.3 Other


3. Basics of design

4. Applications

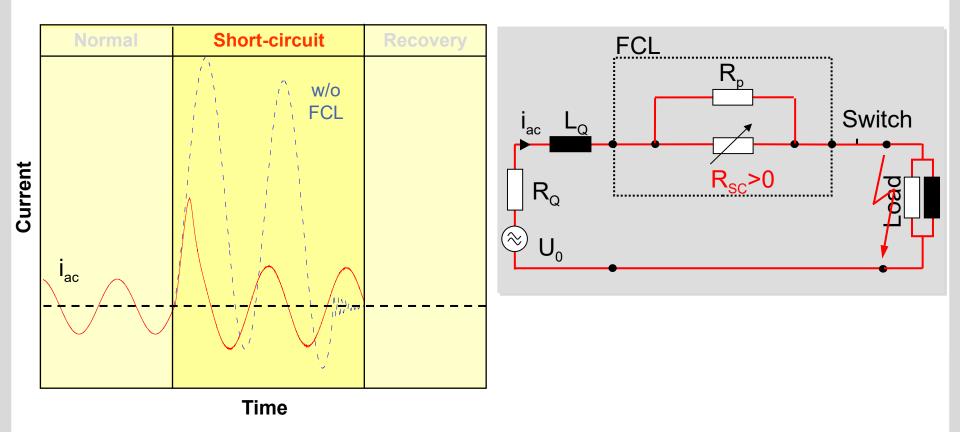
- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

Important parameters

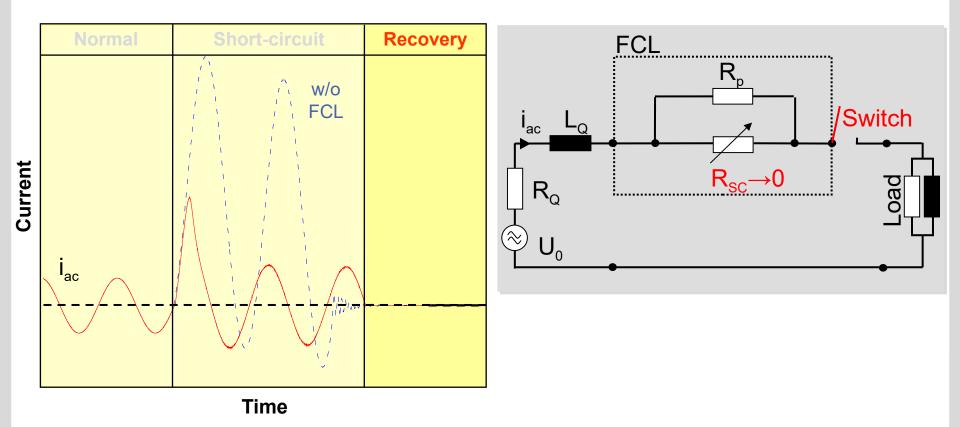


8 - 23.11. 2021

Operating behavior

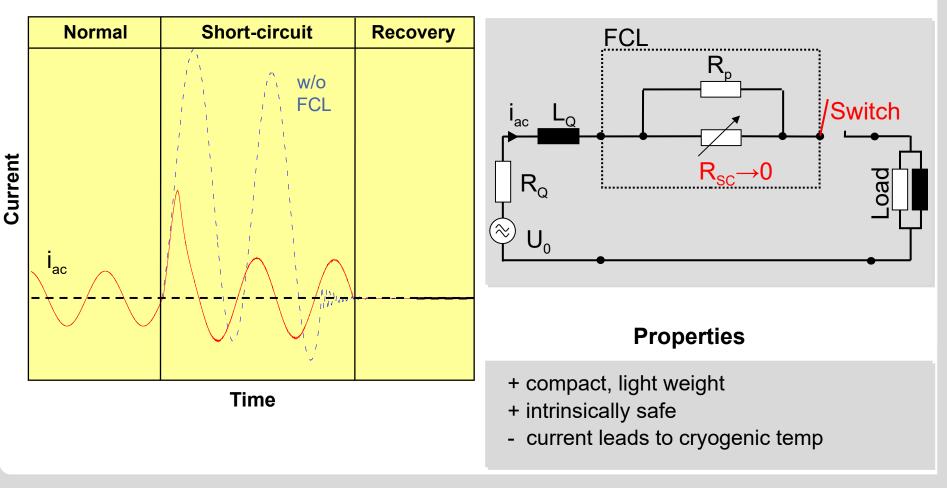

Equivalent circuit

Operating behavior


Equivalent circuit

Operating behavior

Equivalent Circuit


11 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

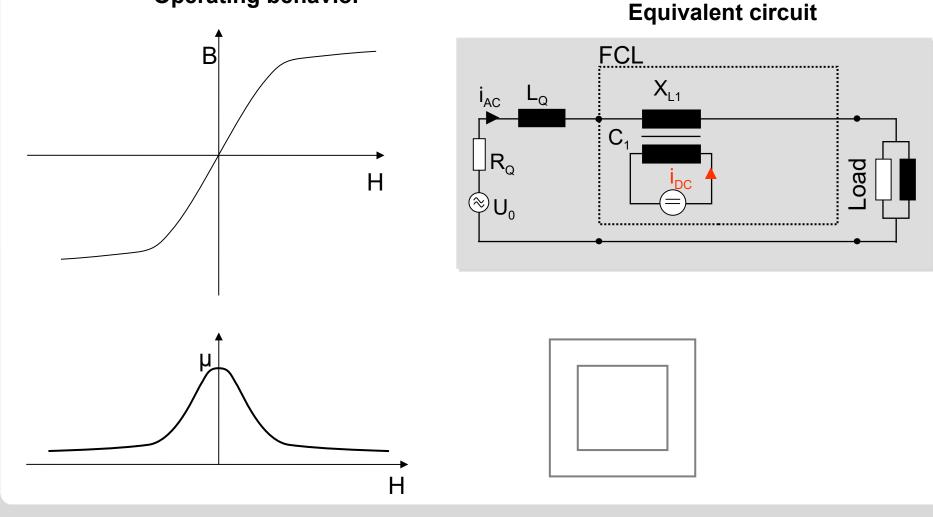
Operating behavior

Equivalent circuit

Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

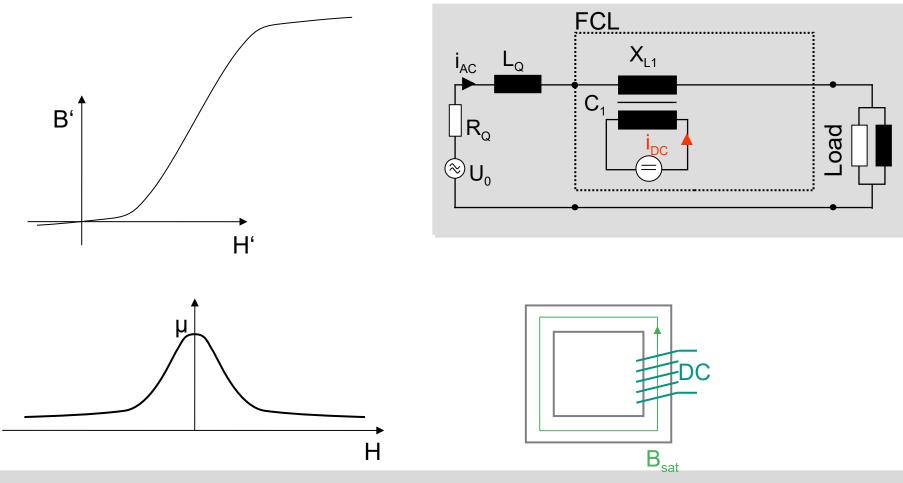

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation
- 2.3 Other
- 3. Basics of design

4. Applications

- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

Operating behavior

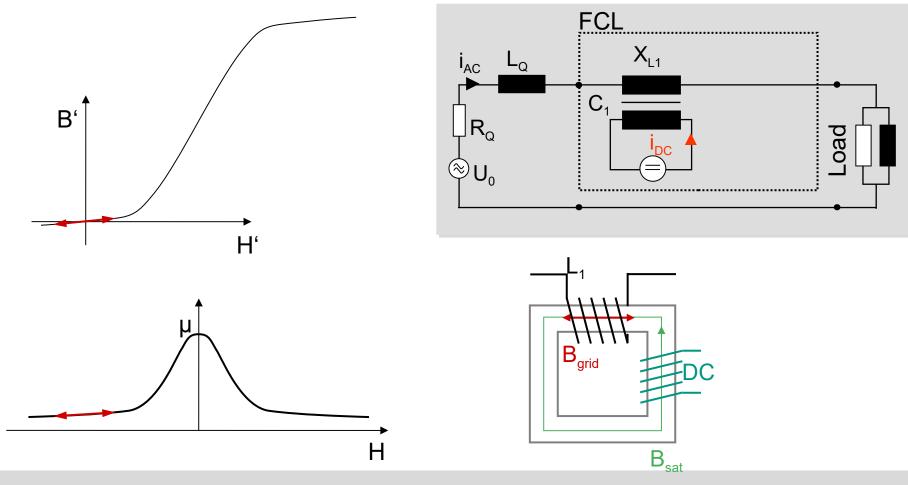
14 - 23.11. 2021


Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

Equivalent circuit

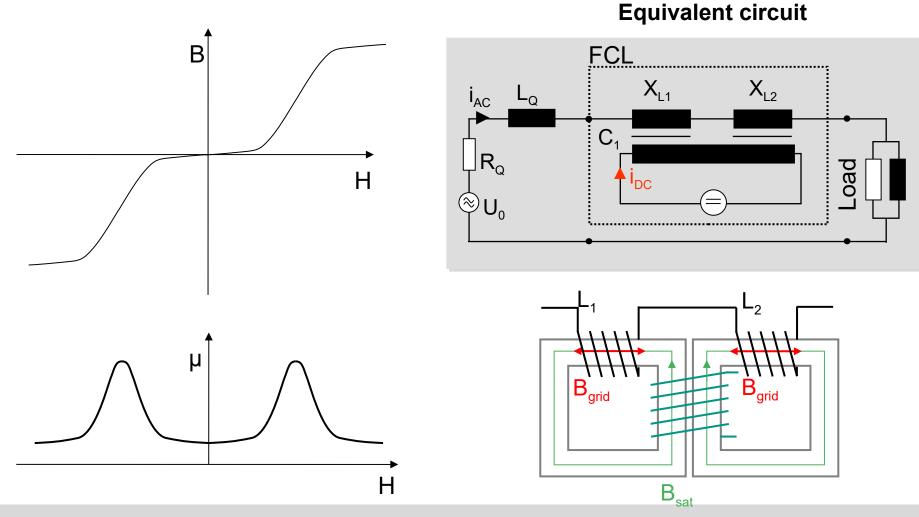
Fault current limiter with Iron core and DCpremagnetisation

Operating behavior


Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

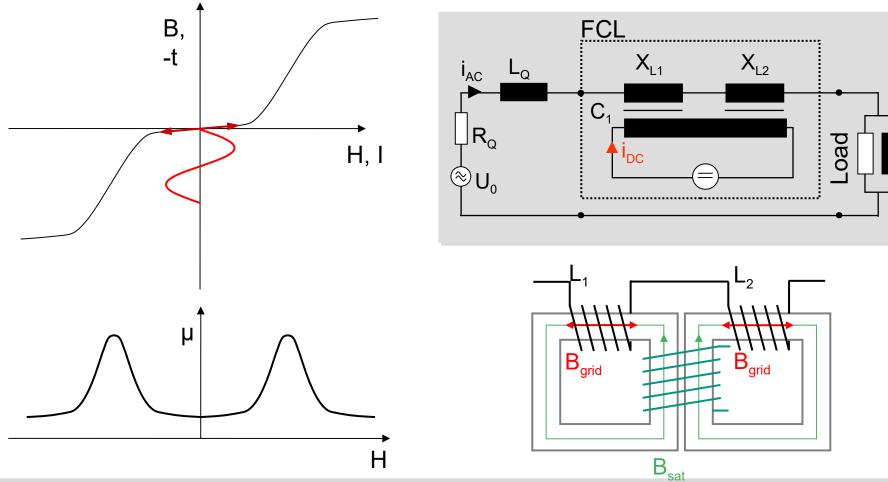
Equivalent circuit

Fault current limiter with Iron core and DCpremagnetisation


Operating behavior

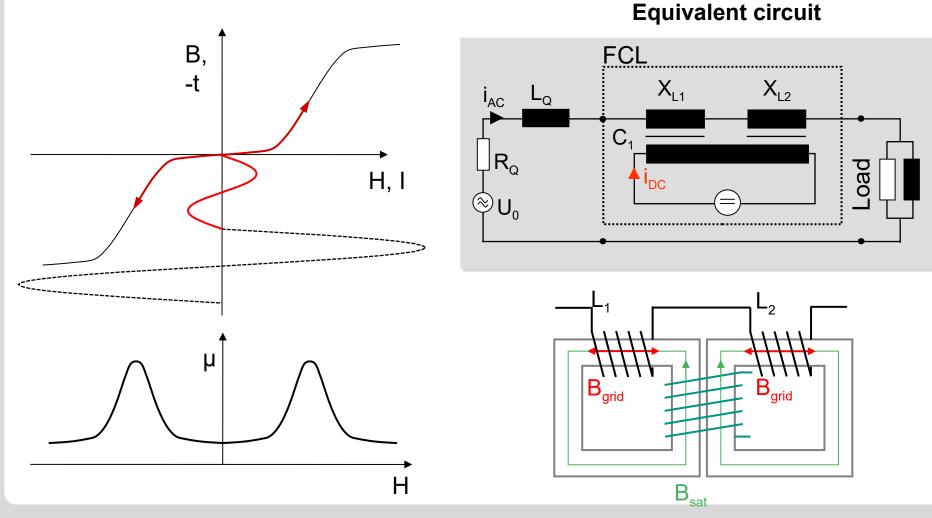
16 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter



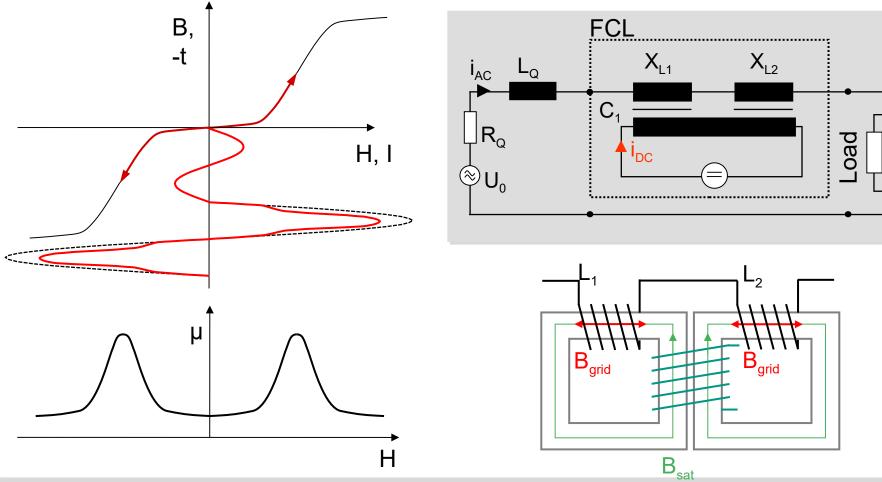
17 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter



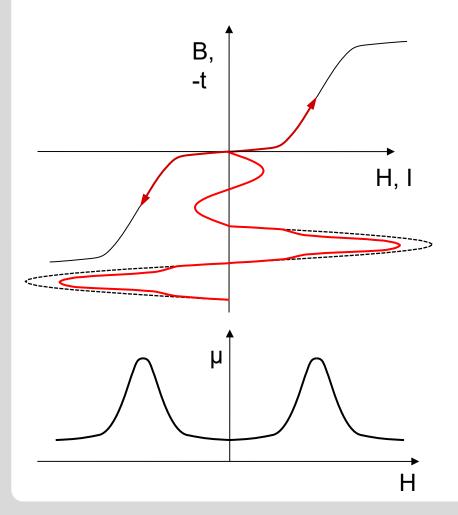
Equivalent circuit

18 - 23.11. 2021

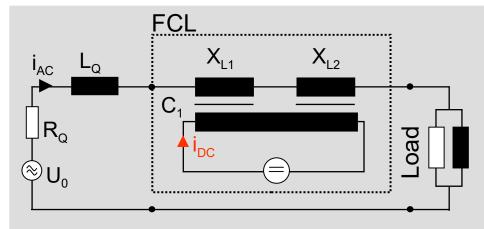

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

Equivalent circuit


20 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems


Institute for Technical Physics

Superconducting Fault Current Limiter

Equivalent circuit

Properties

- + no quench of superconductor
- + immediate readiness for use
- + only DC current in superconductor
- + adjustable trigger current
- High volume and weight
- relatively high impedance

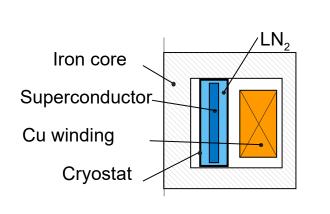
Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

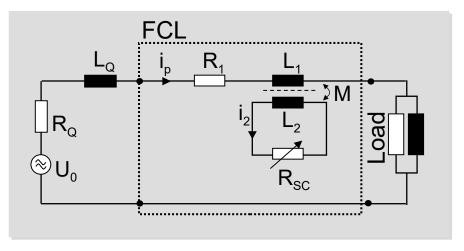
- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

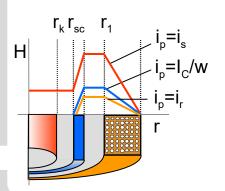
2.3 Other


3. Basics of design

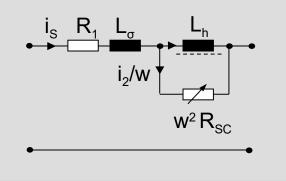
4. Applications

- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples


Shielded iron core

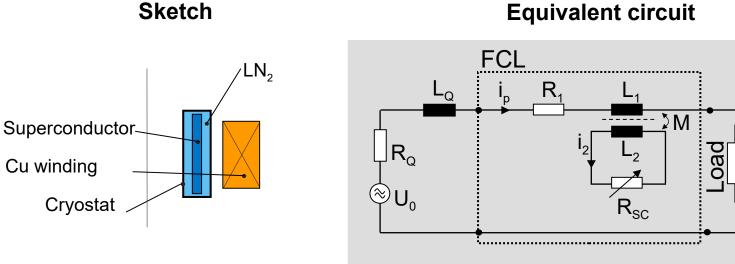


Sketch


Equivalent circuit

Magnetic field

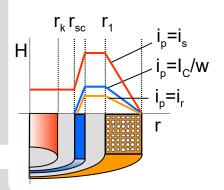
Equivalent circuit



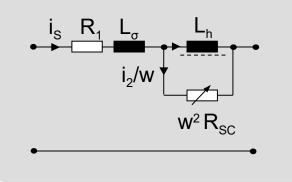
Properties

- + no current leads to cryogenic temperatures
- + intrinsically safe
- large volume
- high weight

Smart Coil (KIT Patent)



Equivalent circuit


Magnetic field

Cu winding

Cryostat

Equivalent circuit

Properties

- + no current leads to cryogenic temperatures
- + intrinsically safe
- large volume
- high weight -

Overview

Semiconductor

- Diode bridge circuit
- Semiconductor switch
- Series resonance link
- Series line compensation
- Fault current controller

Superconductor

- Resistive FCL
- Diode bridge circuit with superconducting coil
- Premagnetized iron core
- Shielded iron core

Hybrid Switches

Flux lock type

Normal conducting

- I_s-limiter / CLiP
- Transformers / Chokes
- HV-Fuses

- Liquid metal
- Polymer PTC
- Arc circuit breaker

- Mech. Switch / Superconductor / Resistance
- Mech. Switch / Semiconductor / Resistance

Superconducting Fault Current Limiter

1. Motivation

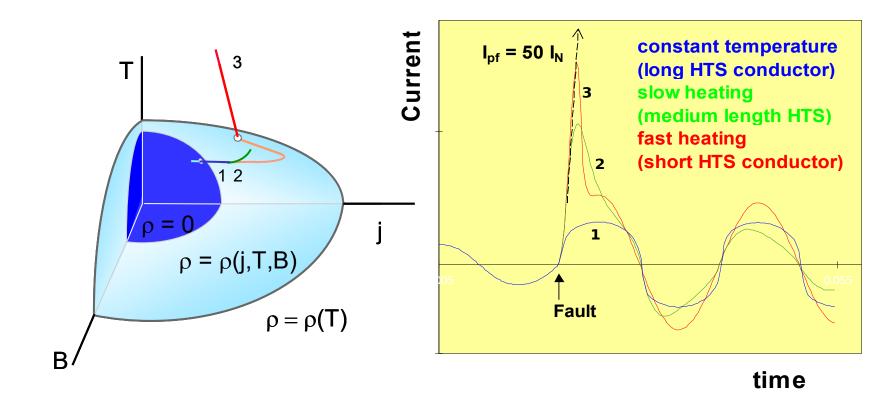
2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

2.3 Other

3. Basics of design

4. Applications


4.1 Overview

- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

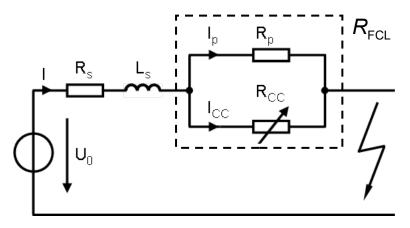
Basics of design Limiting behavior

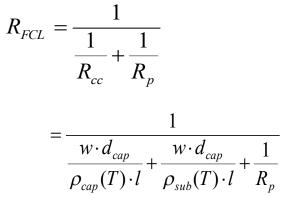
Influence of the conductor length (max. electric field)

Quelle: W. Paul, et. al, "Fault current limiters based on high temperature superconductors – different concepts, test results, simulations, applications", Physica C, 354, (2001), p. 27-33

27 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter


1-phase equivalent circuit for a symmetric 3-phase short-circuit

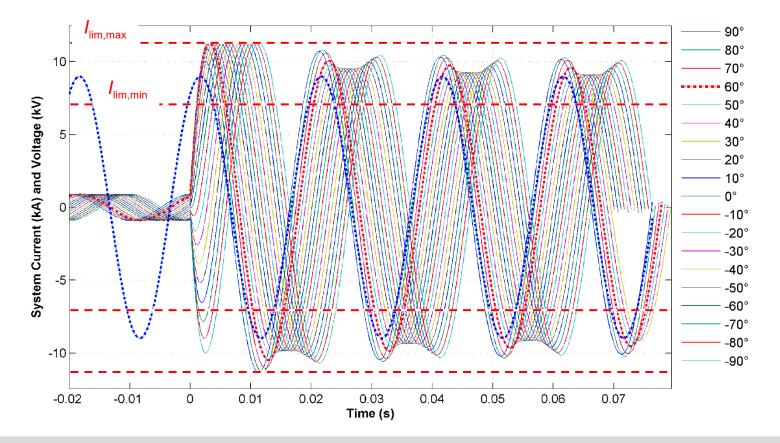

$$\begin{array}{c} & \underset{l_{s}}{\overset{l_{p}}{\underset{\omega}{(1)}}{\underset{\omega}{(1)}{(1)}}} \\ & \underset{l_{s}}{\overset{l_{s}}{\underset{\omega}{(1)}}{\underset{\omega}{(1)}{(1)}}} \\ & \underset{l_{s}}{\overset{l_{s}}{\underset{\omega}{(1)}}{\underset{\omega}{(1)}{\underset{\omega}{(1)}}} \\ & \underset{l_{s}}{\overset{l_{s}}{\underset{\omega}{(1)}}{\underset{\omega}{(1)}}} \\ & \underset{l_{s}}{\overset{l_{s}}{\underset{\omega}{(1)}}} \\ & \underset{l_{s}}{\underset{\omega}{(1)}} \\ & \underset{u_{s}}{\underset{\omega}{(1)}} \\ & \underset{u_{s}}{\underset{u_{s}}{\underset{\omega}{(1)}} \\ & \underset{u_{s}}{\underset{\omega}{(1)}} \\ & \underset{u_{s}}{\underset{\omega}{(1)}} \\ & \underset{u_{s}}{\underset{u_$$

Resistance limits of the current limiter

Temperature well below $T_{\rm max}$ $R_{\rm cc}$ > $R_{\rm p}$ and $\rho_{\rm cap}$ < $\rho_{\rm sub}$

$$R_{FCL,\min} \Rightarrow f(R_p, l, d_{cap})$$

Temperature near $T_{\rm max}$ $R_{\rm cc}$ >> $R_{\rm p}$ and $\rho_{\rm cap} \approx \rho_{\rm sub}$

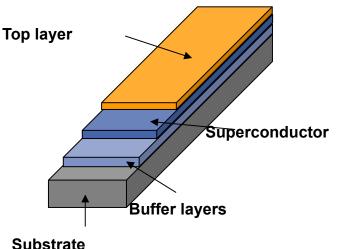

 $R_{FCL,\max} \Longrightarrow f(R_p)$

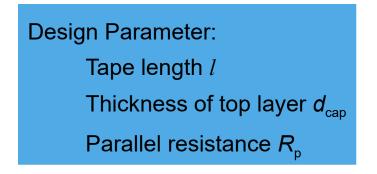
29 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

• The limited current I_{lim} must comply with the limits $I_{\text{lim,min/max}}$ for the entire limitation period and for each switching angle

Temperature limits of tapes $\Delta T = \Delta Q(T) \cdot C(T)$


$$\Delta Q = P(T) \cdot \Delta t = \frac{\Delta u^2(T)}{R_{CC,p}(T)} \cdot \Delta t$$


$$\Delta T = \frac{U_0^2 \cdot \Delta t}{C \cdot R_{CC,p}(T)} \cdot \frac{R_{FCL}^2(T)}{\left[R_{FCL}(T) + Z_s\right]^2}$$

Assumption:
$$Z_{s} << R_{FCL}$$
 and $C_{cap} < C_{sub}$

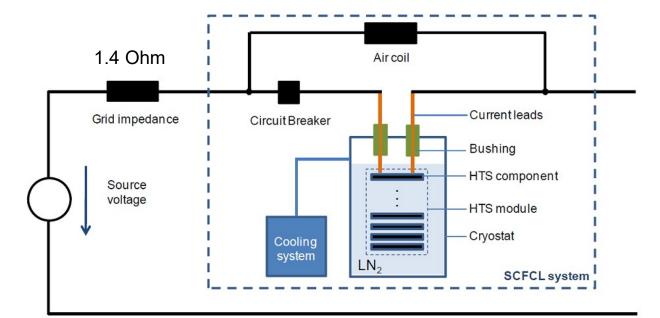
$$\Delta T = \frac{U_0^2 \cdot \Delta t}{l \cdot w \cdot C^* \cdot R_{CC}(T)} = \frac{U_0^2 \cdot \Delta t}{l^2 \cdot C^*} \cdot \left(\frac{d_{cap}}{\rho_{cap}} + \frac{d_{sub}}{\rho_{sub}}\right)$$

$$T_{end} = T_{max} = const. \Rightarrow l \propto \sqrt{d_{cap} + \beta}$$

1. Determination of the number of parallel tapes n_{p}

$$n_p = \frac{I_{\text{max}} \cdot \sqrt{2}}{I_c \cdot k} = \frac{1kA \cdot \sqrt{2}}{320A \cdot 0.9} = 5 \qquad \qquad k = \frac{I_n}{I_{\text{max}}} = \frac{900A}{1000A} = 0.9$$

2. Determination of minimum and maximum current limiter resistance $R_{\text{FCL,min}}$ and $R_{\text{FCL,max}}$ for $I_{\text{lim,min}}$ and $I_{\text{lim,max}}$


$$R_{FCL,\min} \Rightarrow f(R_p, l, d_{cap}) \qquad R_{FCL,\max} \Rightarrow f(R_p)$$

3. Valid values of the design parameters in compliance with the temperature criterion $T \le T_{max}$ during limiting period

$$T_{end} = T_{\max} \Longrightarrow l \propto \sqrt{d_{cap} + \beta}$$

Exercise - Superconducting fault current limiters How to calculate the total heat input?

	120
Limitation time	120 ms
Max. short-circuit current cont. (RMS)	4 kA

33 - 23.11. 2021

Superconducting fault current limiters How much superconducting wire is needed?

How many tapes in parallel?

$$n_p \ge \frac{\sqrt{2}I_r}{I_c} = \frac{1.414 \cdot 1005A}{275A} = 5.16$$

Assumption 2011 for 10mm wide YBCO tape at 77K, sf

What is the total tape length?

1) What is the total voltage along the tape during limiation?

$$U_{\lim,RMS} = \frac{24kV}{\sqrt{3}} - 4kA \quad 1.4\Omega = 8.25kV$$

2) Do not overheat the tape during limitation?

For a electrical field of 0,43 V/cm the temperature during limitation time of 120 ms can be kept below 360 K.

$$l_{sc} = 190m \cdot 6 \cdot 3 = 3420m$$

34 - 23.11. 2021

Exercise - Superconducting fault current limiters How to calculate the total heat input?

Superconducting fault current limiters How to calculate the heat input?

Current lead heat input?

45 W/kA for uncooled and optimized copper current lead from 300 K to 77 K

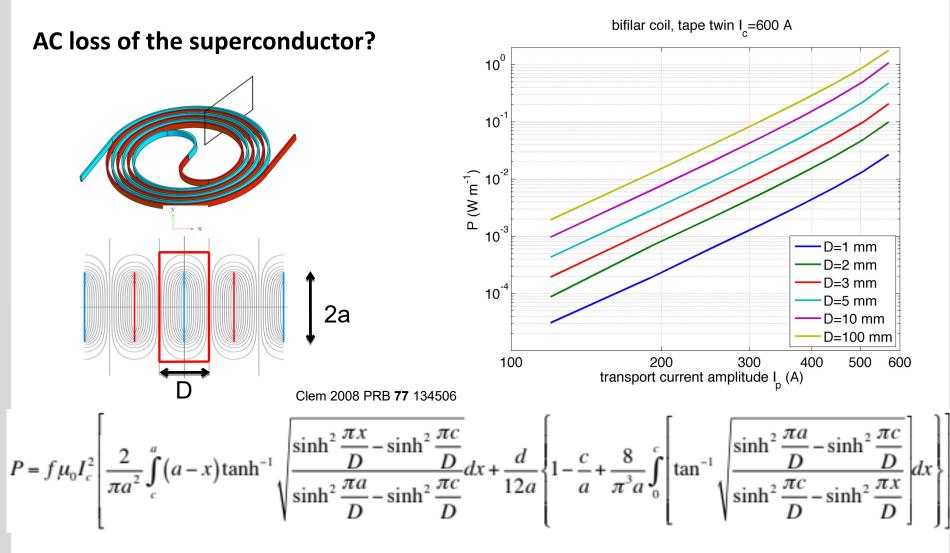
45 W/kA * 1 kA *6=270 W at nominal current

Superconducting fault current limiters How to calculate the heat input?

Loss of the cyrostat?

P=120 W

Three LN2 vessels in one vacuum vessel.



37 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

Superconducting fault current limiters How to calculate the heat input?

38 - 23.11. 2021

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter Institute for Technical Physics

Superconducting fault current limiters How to calculate the heat input?

Summary of heat input

Loss contribution	Loss at 0.1 I _c	Loss at 0.5 I _c	Loss at 1 I _c
Max. superconductor AC loss ¹)	< 1 W	$\sim 10 \text{ W}$	150 W
Max. current lead loss 2)	180 W	~ 220 W	270 W
Cryostat loss 3)	120 W	120 W	120 W
Max. additional loss 4)	1 W	15 W	60 W
Max. total loss at 77 K	$\sim 300 \ { m W}$	~ 365 W	600 W
Max. electric power at RT ⁵⁾	~ 6990 W	8504 W	13980 W

1) According to AC Loss report [2.1.1] Ic=300 A, L=3.4 km

2) Specific current lead loss 45 W/kA [2.6.4]

3) According to Cryostat Design [2.4.1]

4) HTS-Copper-0.5 μ \Omega•12•2/3=4 μ \Omega, Copper connections-2 μ \Omega•12•2/3=16 μ Ω

5) GM Cryocooler efficiency (GM600) 1/23.3

Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

2.3 Other


3. Basics of design

4. Applications

4.1 Overview

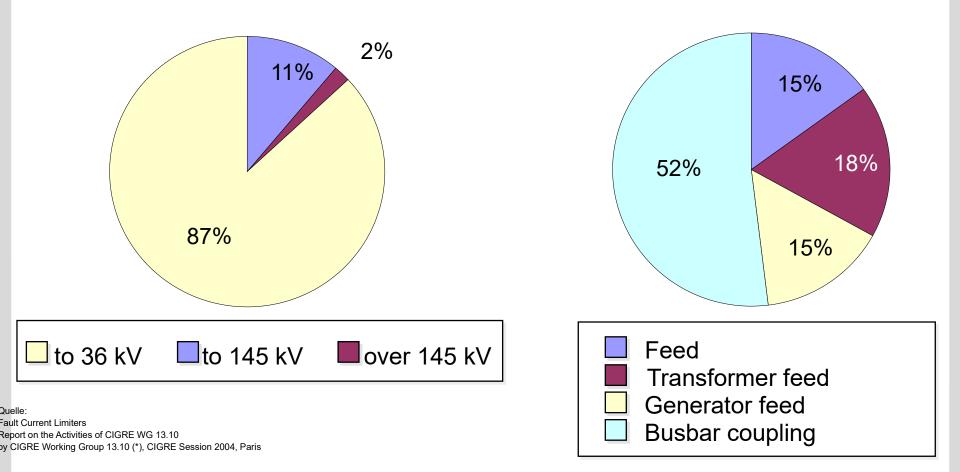
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

Applications

Superconducting Fault Current Limiter

- 1 Generator feed-in
- 2 power plant own demand
- 3 Coupling of sub networks
- 4,5 Busbar coupling
- 6 Parallel to chokes
- 7 Transformer feed
- 8 Busbar feed
- 9 Combination with other
 - SC-components
- 10 Coupling of local generators
- 11 Connecting of ring lines

Quelle


Noe, M.; Oswald, B.R., "Technical and economical benefits of superconducting fault current limiters in power systems", IEEE Trans. Appl. Supercon. Vol. 9/2, June 1999, pp. 1347 –1350

Applications

Which voltage level?

What place of operation?

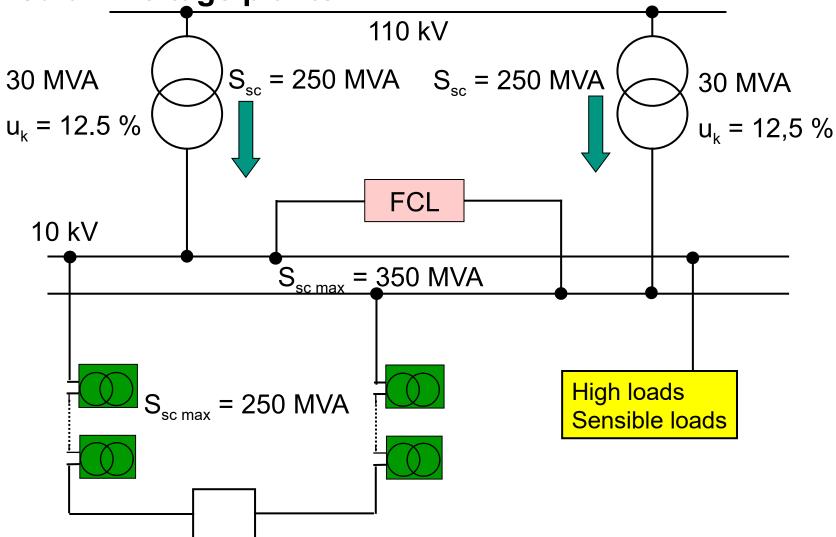
Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

2.3 Other

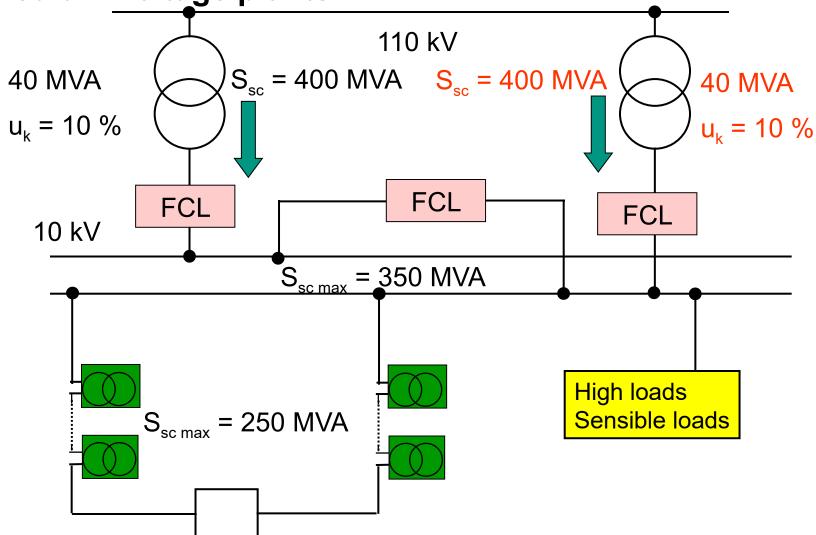

3. Basics of design

4. Applications

- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History
- 6. State of the Art and application examples

Fault current limiter in Busbar coupling in medium voltage plants

44 - 23.11.2021

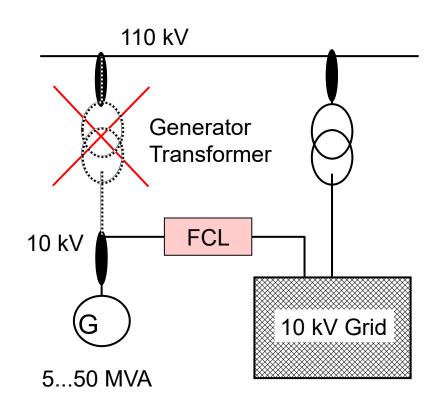

Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

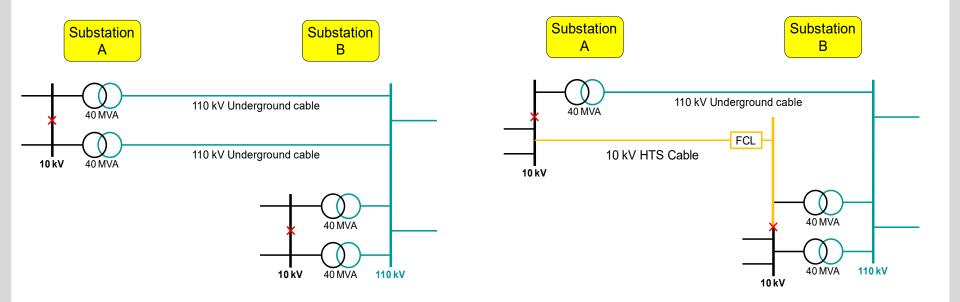
Superconducting Fault Current Limiter

Fault current limiter in Busbar coupling in medium voltage plants

45 - 23.11. 2021


Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter Institute for Technical Physics

Coupling of decentralized feed-in



FCL with superconducting cable

Superconducting Fault Current Limiter

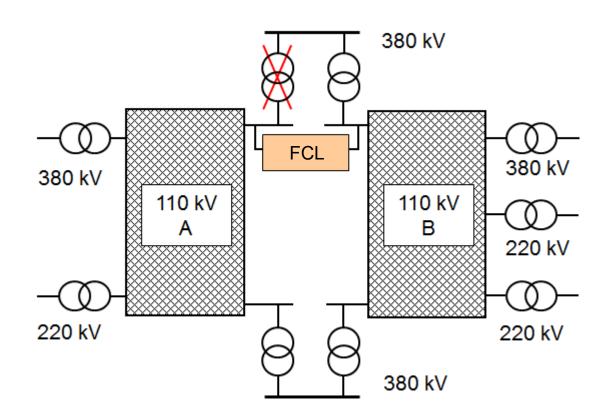
1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

2.3 Other

3. Basics of design


4. Applications

- 4.1 Overview
- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level
- 5. History

6. State of the Art and application examples

Couping of high voltage networks (e.g. RWE)

Für Details: C. Neumann, SCENET Workshop on Superconducting Fault Current Limiters, Siegen, Germany, June 28-29 2004

Institute for Technical Physics

49 - 23.11. 2021

Prof. Mathias Noe - Lecture WS 21/22 Superconducting Power Systems Superconducting Fault Current Limiter

System advantages of superconducting fault current limiter

Superconductivity enables:

Novel current limiting by non-linear current-voltage characteristic curve

Advantage of superconducting fault current limiter

Operation

- Negligible impedance in normal operation
- Fast and effective current limiting in the first rise
- Automatic recovery
- Intrinsically safe
- Applicable in high voltage
- Environmentally friendly

There is currently no conventional measure for limiting short-circuit currents with these characteristics

50 - 23.11. 2021Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems

Superconducting Fault Current Limiter

Superconducting fault current limiter

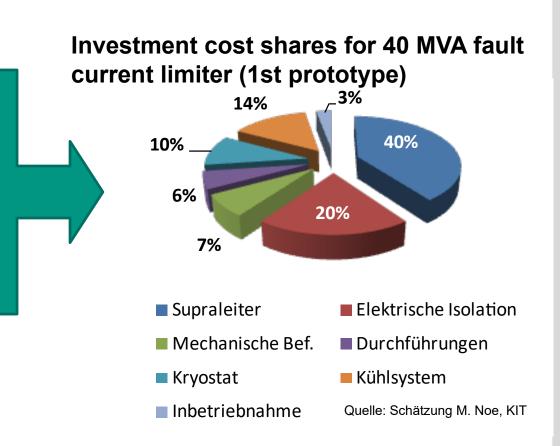
Economical advantages

- Delaying grid expansion or renewal investments
 - e.g. when adding new power plants by adhering to the permissible short-circuit capacity
 - e.g. When feeding in renewable energies by keeping within the voltage band via coupling of MV busbars
- Reduced dimensioning of equipment, systems and power supply units
 - e.g. in the power plant own barf
- Replacement or elimination of equipment
 - e.g. omission of redundant feeders due to partial grid coupling
- Increase in availability and reliability
 - e.g. through coupling of subnetworks
- Lower losses
 - e.g. through equal load sharing of transformers connected in parallel

Superconducting current limiters can achieve savings of several 100 k€ in the medium voltage level and several million € in the high voltage level

51 - 23.11. 2021 Prof. Mathias Noe – Lecture WS 21/22 Superconducting Power Systems

Superconducting Fault Current Limiter


Superconducting fault current limiter

When are superconducting current limiters economical?

Main cost components

- Superconductor
- Insulation
- Mechanical components
- Feedthroughs
- Cryostat
- Cooling system
- Commissioning
- Man hours
- Overhead and profit

Superconducting Fault Current Limiter

1. Motivation

2. Different types of fault current limiter

- 2.1 Resistive fault current limiter
- 2.2 Fault current limiter with Iron core and DC-premagnetisation

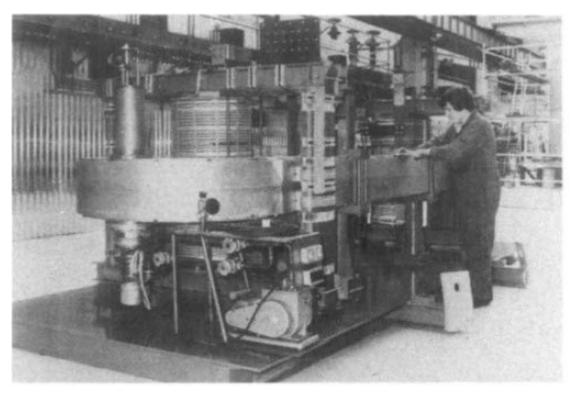
2.3 Other

3. Basics of design

4. Applications

4.1 Overview

- 4.2 Application in medium voltage level
- 4.3 Application in high voltage level


5. History

6. State of the Art and application examples

One of the first large superconducting fault current limiters

DC biased iron core type

B.P. Raju, T.C. Bartram; Fault current limiter with superconducting DC Bias, IEEE Proc. Vol. 129, No. 4, July 1982, pp.166

Voltage 3 kVFrequency 50 HzNormal current $556 \text{ A}_{\text{RMS}}$ Fault current for fault at *V peak* 2900 A_{peak} for fault at *V zero* 14750 A_{peak} Normal voltage drop 4.4 %

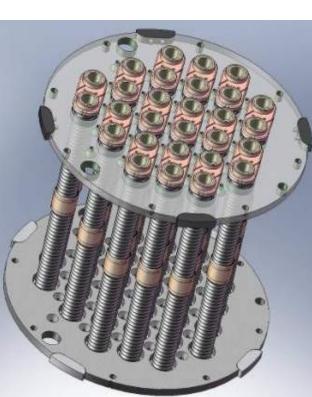
First field test of a resistive superconducting fault current limiter BMBF Project CURL10 Voltage

Source: R. Kreutz, J. Bock, F. Breuer, K.-P. Juengst, M. Kleimaier, H.-U. Klein, D. Krischel, M. Noe, R. Steingass, and K.-H. Weck, System Technology and Test of CURL 10, a 10 kV, 10 MVA Resistive High-Tc Superconducting Fault Current Limiter, IEEE Trans. On Applied Superconductivity, Vol. 15, No. 2, June 2005

Voltage 10 kV Frequency 50 Hz Normal current 600 A_{eff} Fault duration 60 ms Max. lim. current 8,75 kA Temperature 66 K Superconductor Bi 2212 Massive

Only one 1-phase shortcircuit during operation

Resistive FCL (Nexans SuperConductors)


In 2009 two grid installations in Europe

Application for one phase

Dual component Bi 2212 bulk

Module

Source: Nexans SuperConductors

Source: Nexans SuperConductors

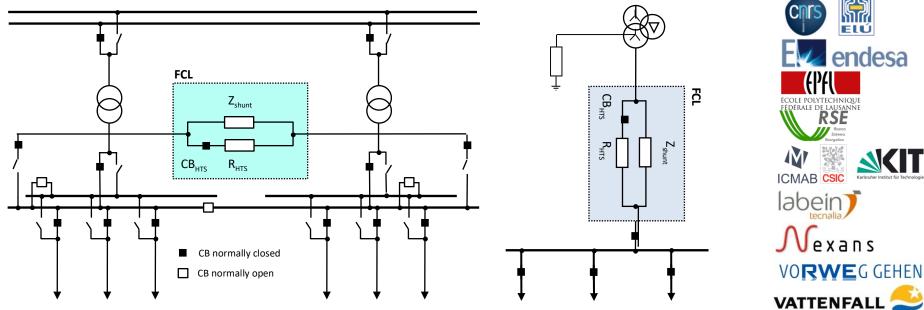
Source: Nexans SuperConductors

Resistive FCL (Nexans SuperConductors) In 2009 two grid installations in Europe

12 kV, 800 A installed resistive FCL in the captive grid of a Vattenfall power plant near Cottbus, Germany

Rated voltage 12 kV Rated currend 800 A Short-term overcurrent 4,1 kA (50 ms) Max. const. current 1,8 kA (15 s) Limiting time 120 ms Limiting current < 27 kA

Source: Nexans SuperConductors


AIR LIQUIDE

EU Project Eccoflow (2010-2014)

Objective: Development and field test of a resistive FCL with YBCO

Transformer feed-in

Unique (1005A,24kV):

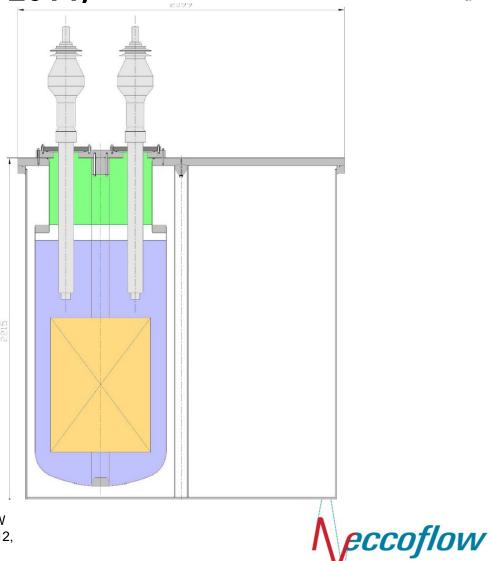
- One design for two different applications
- Two field tests
- 5 energy supply companies as partner
- Design as permanent installation

EU Project Eccoflow (2010-2014)

Specification

	ENDESA	VSE	ECCOFLOW
Rated voltage	16.5 kV	24 kV	24 kV
Rated current	1000 A	1005 A	1005 A
max. short-circuit current(peak)	22 kA	26 kA	26 kA
max. limited current (peak)	10.8 kA	17 kA	10.8 kA
Fault duration	1 s	120 ms	1 s
HTS Limiting duration	80 ms	80 ms	80 ms
Recovery time	< 30 s	< 30 s	< 30 s
AC Voltage	50 kV	50 kV	50 kV
Lightning surge voltage	125 kV	125 kV	125 kV

Source: Eccoflow Detailed Design Report, 2011



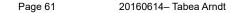
EU Project Eccoflow (2010-2014)

HTS Limiter arrangement

- 12 components per phase in series
- 3 LN₂ vessels, only 1 vacuum vessel
- About 100 W thermal losses
- Liquid nitrogen at 77 K, 2 G-M cryocoolers
- Compact design, close to series production

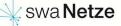
Source: J. Schramm et. al. "Design and Production of the ECCOFLOW resistive Superconducting Fault Current Limiter ", ASC Conference 2012, Portland USA

"ASSiST" – SFCL for public 10 kV grid of Stadtwerke Augsburg, Bavaria, Germany


SFCL based Solution (SFCL+switchgear+control+DAQ) successfully installed and inaugurated in

gefördert von Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

Details


- Collaboration of Siemens EM, CT & Stadtwerke Augsburg
- Integration of MTU's extended testing facility of combined heat and power unit requires reduction of short-circuit current
- Combination of superconducting 15 MVA SFCL with ultrafast breaker and parallel series reactor
- Closed cooling system (cold heads included) no blow-off during limitation
- Reduction of losses compared to conventional solution
- Increased system stability, no voltage drop
- Large area breaker up-grade dispensable
- Timeline:
 - Apr. 15, 2014: project start
 - Mar. 15, 2016: official inauguration
 - till Jan. 15, 2017: data acquisition & monitoring (to Siemens Erlangen)
 - Continued operation planned after project end

Visitors (IEA) at SFCL site

SuperOx(2019)

World's first 220 kV high-voltage current limiter successfully used in field test

Voltage 220 kV Current 1200 A Max. limited current 7 kA Fault duration ?? ms 25.2 km, 12mm wide YBCO tape

Picture and information Superox

Projects superconducting fault current limiter

Resistive FCL

Lead Company	Country	Year	Data	Superconductor
ACCEL/NexansSC	Germany	2004	12 kV, 600 A	Bi 2212 bulk
Toshiba	Japan	2008	6.6 kV, 72 A	YBCO tape
Nexans SC	Germany	2009	12 kV, 100 A	Bi 2212 bulk
Nexans SC	Germany	2009	12 kV, 800 A	Bi 2212 bulk
ERSE	Italy	2011	9 kV, 250 A	Bi 2223 tape
ERSE	Italy	2012	9 kV, 1 kA	YBCO tape
KEPRI	Korea	2011	22.9 kV, 3 kA	YBCO tape
Nexans SC	Germany	2011	12 kV, 800 A	YBCO tape
AMSC / Siemens	USA / Germany	2012	115 kV, 1.2 kA	YBCO tape
Nexans SC	Germany	2013	10 kV, 2.4 kA	YBCO tape
Nexans SC	UK	2015	12 kV, 1.6 kA	YBCO tape
Siemens	Germany	2016	12 kV, 815 A	YBCO tape
Superox	Russia	2019	220 kV, 1.2 kA	YBCO tape
LS Industrial Systems	Korea	2020	25.8 kV, 2 kA	YBCO tape
China Southern Pow. Gr.	China	2023	160 kV, 2 kA	YBCO tape

Learning objectives

Being able to explain the operating principles of the most important current limiter types.

Being able to select and justify a preferred current limiter type for given application examples.

Understand and be able to explain various possible applications

Being able to classify the state of development of superconducting current limiters and describe important milestones.